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Introduction 
The goal of this project was to enable the solution of hard formal verification problems - and thereby 
reduce the cost and improve the quality of advanced hardware designs - by making it possible to combine 
different verification techniques in flexible ways. This was be accomplished by developing an open software 
environment that allows various techniques to be combined easily. Various prototype tools were developed 
to support and use this environment, and results were evaluated on some example designs of interest. 

There were significant accomplishments in several areas. 
• We developed a better understanding of design and implementation issues in building a federated 

environment. 

• SRI's widely-used PVS theorem prover was modified to provide APIs (application program interfaces) 
enabling it to be used in a variety of other tools. The enhanced version of PVS was used in the 
successful verification of hardware and safety-critical systems by other groups. 

• We implemented a general-purpose system of cooperating decision procedures for quantifier-free first- 
order logic formulas, called SVC. This system integrated several decision procedures into a single 
framework, and was also used as a software component in several different verification tools, so it 
was "federated" at two different levels. The source code for the SVC system is freely available, and 
the system has been extensively used inside and outside of Stanford. Later, work was begun on re- 
engineering SVC to be more flexible, powerful, and efficient. 

• We developed and prototyped new techniques for checking table-based specifications of embedded 
software systems, in the RSML description language. We analyzed and found some problems in an 
RSML specification of the safety-critical TCAS collision avoidance system. 

• A tool for doing approximate symbolic model checking was prototyped and applied to an example 
design from another group at Stanford. Approximate model checking gains efficiency by computing an 
approximation of the reachable states of a design; however, the approximation is conservative, meaning 
that if the design is proved to have a given property using this technique, it actually has the property. 

• The federated environment (including SVC) was applied to microprocessor verification. A new ap- 
proach, called "incremental flushing" was developed for verifying more sophisticated architectures 
than previously. A proof of an out-of-order microprocessor design was done using this technique, using 
a combination of PVS and SVC. 



Implementation Issues 

This project was based on the view that formal verification research would begin emphasizing combining 
tools and techniques to solve problems that were too difficult to handle using a single method. The vision of 
this project was that systems could be constructed from software components. Verification tools tend to be 
structured in three levels: low-level libraries for computation-intensive algorithms; higher-level algorithms 
and heuristics, which can have complex control structure, but are do not account for the bulk of computation 
time; and scripts or interactive commands that guide the application of the tool to examples. 

More sophisticated systems could be constructed, and more challenging applications attempted, if we 
could make it much easier to combine techniques. Our strategy was to make use of efficient libraries in C 
and C++ for the low-level, computationally intensive code, and use another programming language (the 
"glue language") for the algorithmic code. Early in the project, we decided on the use of Common Lisp as 
the glue language for several reasons: it was already being used in the PVS implementation; it was well- 
suited for writing complex heuristic code, especially if it was not computation intensive; the availability of 
an interpreter meant that it could be used interactively; and that there was a smooth path from interactive 
commands to scripts to application tools. 

Some libraries were available off-the-shelf, such as libraries for Boolean decision diagrams (BDDs), which 
are data structures for representing Boolean functions that are heavily used in formal verification applications. 
Other libraries, such as SVC (the Stanford Validity Checker), a decision procedure for quantifier-free first- 
order logic with uninterpreted functions, arrays, bit-vectors, and real linear arithmetic, were implemented 
during the project. In particular, SVC was written to be callable from other programs (rather than being a 
stand-alone tool) because of this project. 

The choice of Common Lisp as the glue language was reasonably successful. Unfortunately, use for 
the language appears to be declining, but there are still good free implementations available for Linux. The 
students building prototype tools quickly learned the language, and generally found that, as planned, it made 
experimentation with the tools relatively easy. Although not all the work under the contract was based on 
the same implementation strategy, much of it was, and many of the sub-projects shared substantial amounts 
of code. Some of the microprocessor verification work and the approximate model checking sub-project were 
entirely implemented using this strategy. 

In addition to proving the success of this approach, and enabling other research on the project to proceed 
more efficiently, we learned about some issues for implementing embeddable libraries. In the re-design of 
SVC, we have designed in a storage allocation method (based on reference counting) that should work better 
in embedded applications. We've also taken care to make the code re-entrant and re-initializable, because 
persistent global state in the library makes applications unpredictable and sometimes unreliable. 

Similarly, SRI enhanced their widely-used PVS theorem prover to provide APIs that could be used in other 
tools. Since PVS is a large system, the process of exposing internal interfaces was done incrementally (indeed, 
this process is still underway). These enhancements received immediate use both inside and outside of SRI 
for verification of hardware and safety-critical systems. PVS also made better use of external components by 
calling them directly from Lisp instead of using intermediate files. This speeded up some verification tasks 
by a factor of a hundred. 

One of the most important lessons was a bit surprising: well-designed and implemented libraries will 
work with almost any glue language. The design of component APIs is much more important than the 
choice of glue language. The API makes the library useful from almost any language that can call C or C++ 
functions, and the API does not have to change with the glue language. 

Decision procedures 

Decision procedures for fragments of first-order logic have been a critical component in formal verification 
tools and related applications. Indeed, one of the most important attributes of the PVS theorem prover 
is that it incorporates decision procedures of various kinds, which can be used to deal with many tedious 
aspects of proofs automatically. 

To enable powerful verication tools, we found that it was necessary to make more efficient and more 
general decision procedures. In particular, we found that reasoning about bit-vectors was critical for hardware 



verification (and, it turns out, for other applications such as digital signal processing software), but that 
good decision procedures for bit-vectors were not available. We developed an efficient decision procedure 
for a theory of bit-vectors which included concatenation and extraction of fixed-width bit fields, as well as 
addition and subtraction. Our paper on this subject was awarded "best paper" at the Design Automation 
Conference in 1998 [1]. 

At a somewhat higher-level, it is desirable to build general decision procedures from individual theories 
(such as arrays or bit-vectors). Integrating diverse decision procedures so that the result gives correct results 
with reasonable efficiency is a non-trivial task. The SVC library that was produced as part of this project 
attempted to solve this problem, with at least partial success. Although SVC was begun under an earlier 
DARPA contract (NAG 2-891), and some of the development was done by students supported by other 
contracts, much of the development work, many optimizations and extensions, and the public release were 
funded by this project. 

For various reasons, it has been difficult to benchmark the performance of SVC against the few other 
decision procedures of similar generality, but we are confident that, on most examples, it out-performs the 
others by orders of magnitude (authors of other packages have not disputed this claim). SVC has been 
the basis for a great deal of formal verification research at Stanford, and has also been used externally for 
verification of microprocessor designs, DSP software, and program analysis. 

The source code for SVC is freely available on the web: http://verify.stanford.edu/SVC. 

Microprocessor Verification 
This project included a great deal of work on the difficult problem of verifying microprocessor designs. The 
emphasis was to go beyond the very simple designs that were verified previously (e.g., simple RISC designs) to 
more realistic designs. The two primary directions were to attack more sophisticated architectural features, 
such as out-of-order instruction execution, and to attempt to verify actual designs created by other groups. 

In previous work on verifying microprocessors, we discovered an automatic way to relate a pipelined 
microprocessor design to a non-pipelined formal specification of the "instruction set architecture" (ISA) of 
the microprocessor (the ISA is a programmer's view of what the machine does). This idea was extended at 
both SRI and Stanford to deal with more sophisticated architectures, which (for efficiency) can execute the 
instructions in a different order than the order specified by the program. 

The original work on verifying pipelined processors was based on the concept of "flushing" the pipeline: 
the processor is controlled to complete any unfinished instructions, so that the resulting state is much easier 
to match up with the state of the ISA. The flushing method becomes computationally infeasible for the deep 
pipelines that exist in modern out-of-order architectures, so we developed a different method that flushes 
small numbers of instructions at a time [2, 3]. 

A great deal of effort was expended on trying to verify some designs created by Prof. Mark Horowitz's 
research group. We worked on two examples: Torch, which is a design created for research and education, 
and the protocol processor (PP) used in the FLASH multiprocessor design. Ultimately, we were not able 
to verify these designs formally, but we did develop some very useful techniques and prototype tools in the 
process. Several serious bugs were discovered in both designs that had escaped extensive previous verification 
efforts, including innovative methods that were the basis for a PhD thesis in Horowitz's group. 

Tools that were developed for this work relied very heavily on the federated environment. We build a 
prototype Verflog translator and build a symbolic simulator for circuits, using Lisp and SVC. SVC was also 
used to answer queries about the results of symbolic simulation. 

In both designs, we focussed on aspects of memory subsystems: the instruction fetch unit of Torch, and the 
memory interface unit of PP. We found that these designs were difficult to deal with using previous formal 
verification techniques, because they intimately combined control flow and data flow. Previous theorem 
proving methods would have had great difficulty with the complexity of the control flow in these designs. 
Previous methodology for model checking would have been to separate the control and data and abstract 
the data, but that approach fails for these circuits, because the desired behavior of the circuit cannot be 
specified for the control without the data flow. 

Consequently, we developed a new verification method for such systems. The method requires isolating 
control finite state machines, identifying control states where the state of the data path is especially simple to 



specify, then symbolically simulating the execution paths described by the regular expression. The method 
also includes heuristics for computing invariants around loops [4]. 

Approximate model checking 

Symbolic model checking using BDDs was (and continues to be) one of the more successful approaches to 
formal verification when this project started. However, the size of circuits that can be verified automatically 
is limited. This limitation is a major barrier to widespread practical application of model checking. 

Model checking can be used on larger designs if we can settle for an approximate result. If such an 
approximation is consistently an over-approximation, it is still possible to conclude with certainty that a 
design has a desired property. 

The core computation in model checkers finds the set of states that are reachable (for some inputs or 
internal nondeterministic choices) from a given initial state. Many correctness properties can be reduced to 
the question of whether all of these reachable states have a specified logical property. If it can be shown that 
every one of a superset of the reachable states has this property, it is guaranteed that all reachable states 
have the property (although, if a state in the superset fails to have a property, it cannot be known without 
further analysis whether said state represents a possible error or not, because it is not known whether the 
state is reachable). 

In this project, we used a method of over-approximating the set of reachable states by projecting the 
sets onto subsets of the state variables. Intuitively, this can be thought of as finding an enclosing volume 
of a complex shape by looking at the shadows it casts in several directions. This idea had been explored 
earlier, but it required that the sets of variables onto which the states were projected had to be disjoint. 
We transcended this major limitation by finding a way to project the state space onto non-disjoint sets of 
variables. Some of the new manipulations on BDDs were discovered that will probably be more generally 
useful [5, 6, 7]. 

Several enhancements of this method were discovered later, including the idea of doing iterated forwards 
and backwards reachability of states (forwards from the start states, backwards from states violating a desired 
property). We also found an effective way to improve the choice of projection variables automatically. Using 
these ideas, we were able to verify circuits that we were not able pto do using exact model checking [8, 9]. 

Specification checking 

An important application that was prototyped using the federated environment was a checker for specifica- 
tions of safety-critical software. We studied a particular specification, that of the TCAS air-traffic collision 
avoidance system. TCAS is a device that generates an audible warning if one plane is dangerously close to 
another. This is one of the largest and most complete specifications of a real safety-critical system that is 
publically available. 

Specification languages, such as RSML, for safety-critical systems often insist that the specifications be 
deterministic, meaning that only one transition can be enabled at a time. However, the enabling conditions 
for transitions can be complex, so checking determinism can be difficult. The prototype tool used SVC to 
check for determinism of selected transitions in RSML specifications. Using the tool, we discovered a serious 
problem in the TCAS specification (it turned out that the problem had been discovered independently by a 
validation group, and fixed in a later revision of the specification) [10, 11]. 
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